Decision
Science
1.
Based on the following data develop the forecasting model (adopt Exponential
Smoothing
Technique)
by considering the following alpha levels. α = 0.2, 0.4, 0.6, 0.8.
Write
your conclusion after calculations of Errors (MAD and MSE only).
Forecast
FTAs (foreign tourist arrival) for the year 2018.
Data:
The following data shows the Foreign Tourist Arrival in the India from 1991 to
2017
Year |
FTAs in India (in Million) |
1991 |
1.68 |
2001 |
2.54 |
2002 |
2.38 |
2003 |
2.73 |
2004 |
3.46 |
2005 |
3.92 |
2006 |
4.45 |
2007 |
5.08 |
2008 |
5.28 |
2009 |
5.17 |
2010 |
5.78 |
2011 |
6.31 |
2012 |
6.58 |
2013 |
6.97 |
2014 |
7.68 |
2015 |
8.03 |
2016 |
8.8 |
2017 |
10.04 |
Data
Source: Data.gov.in
Note:
You are advised to calculate manually, do not use any software.
Answer:
To
apply exponential smoothing, we need to choose an alpha value. The alpha value
determines the weight given to the most recent observation compared to the
previous forecast. We will try different alpha values (0.2, 0.4, 0.6, and 0.8)
to see which one gives the best results.
First,
let's create a table to calculate the forecasts:
Year |
FTAs (in Million) |
α=0.2 |
α=0.4 |
α=0.6 |
α=0.8 |
1991 |
1.68 |
1.6800 |
1.6800 |
1.6800 |
1.6800 |
2001 |
2.54 |
1.8440 |
1.8776 |
1.9120 |
1.9440 |
2002 |
2.38 |
2.0384 |
1.9266 |
1.9312 |
1.9888 |
2003 |
2.73 |
2.1917 |
2.0296 |
1.9797 |
2.0778 |
2004 |
3.46 |
2.4254 |
2.2218 |
2.1379 |
2.4556 |
2005 |
3.92 |
2.8283 |
2.4611 |
2.3747 |
3.0911 |
2006 |
4.45 |
3.3627 |
2.7473 |
2.7779 |
4.2182 |
2007 |
5.08 |
3.9902 |
3.0872 |
3.3252 |
6.0436 |
2008 |
5.28 |
4.6042 |
3.4833 |
3.9441 |
8.0087 |
2009 |
5.17 |
4.8154 |
3.8650 |
4.5916 |
10.2017 |
2010 |
5.78 |
5.0123 |
4.2505 |
5.2426 |
12.6413 |
2011 |
6.31 |
5.3058 |
4.6343 |
5.8717 |
15.3173 |
2012 |
6.58 |
5.6166 |
5.0094 |
6.4687 |
18.2275 |
2013 |
6.97 |
5.9345 |
5.3717 |
7.0295 |
21.3685 |
2014 |
7.68 |
6.2776 |
5.7126 |
7.5502 |
24.7387 |
2015 |
8.03 |
6.6430 |
6.0298 |
8.0291 |
28.3357 |
2016 |
8.80 |
7.0223 |
6.3223 |
8.4643 |
32.1571 |
2017 |
10.04 |
7.4258 |
6.5889 |
8.8557 |
36.1994 |
To
calculate the forecasts, we start with the
2.
Calculate the Correlations for the following pairs of variables and write your
Conclusion.
·
In Migration of Persons from other states (Census of India)
& Total MSMEs
·
In Migration of Persons from other states (Census of India)
& Active Companies
·
In Migration of Persons from other states (Census of India)
& 2017-18 GSDP - CURRENT PRICES (` in Crore)
·
Total MSMEs & Active Companies
Note:
Use MS EXCEL, SPSS, SAS etc. for the calculations.
State |
Total MSMEs |
Active Companies |
In Migration of Persons from other states
(Census of India) |
2017-18 GSDP - CURRENT PRICES (` in Crore) |
ANDAMAN & NICOBAR ISLANDS |
6,061 |
319 |
81,267 |
7,871 |
ANDHRA PRADESH |
6,41,929 |
1,16,210 |
15,91,890 |
15,46,313 |
ARUNACHAL PRADESH |
60,932 |
237 |
1,36,010 |
22,432 |
ASSAM |
20,189 |
6,346 |
4,95,699 |
2,88,691 |
BIHAR |
9,02,520 |
20,867 |
11,11,954 |
4,84,740 |
CHANDIGARH |
11,209 |
7,956 |
6,33,966 |
38,760 |
CHHATTISGARH |
69,758 |
7,109 |
12,67,668 |
4,84,740 |
DELHI |
1,63,821 |
2,16,531 |
63,30,065 |
6,86,824 |
GOA |
8,620 |
4,125 |
2,69,689 |
70,494 |
GUJARAT |
8,07,378 |
62,619 |
39,16,075 |
13,28,068 |
HARYANA |
1,85,486 |
30,868 |
36,26,318 |
6,49,592 |
HIMACHAL PRADESH |
14,674 |
3,344 |
3,95,504 |
1,38,351 |
JAMMU &
KASHMIR |
9,399 |
2,745 |
1,55,187 |
1,37,427 |
JHARKHAND |
1,57,813 |
9,554 |
21,95,521 |
2,76,243 |
KARNATAKA |
3,32,872 |
68,333 |
32,47,660 |
13,57,579 |
KERALA |
1,25,934 |
31,244 |
6,54,423 |
7,01,577 |
MADHYA PRADESH |
9,34,293 |
22,315 |
27,44,332 |
7,24,729 |
MAHARASHTRA |
16,92,859 |
2,31,912 |
90,87,380 |
24,11,600 |
MANIPUR |
34,423 |
434 |
20,100 |
23,835 |
MEGHALAYA |
2,208 |
560 |
1,07,915 |
30,790 |
MIZORAM |
3,238 |
66 |
41,380 |
18,737 |
NAGALAND |
1,543 |
235 |
1,08,020 |
24,492 |
ODISHA |
1,19,291 |
15,204 |
8,55,096 |
4,34,769 |
PUDUCHERRY |
10,539 |
1,282 |
3,39,967 |
32,962 |
PUNJAB |
2,03,394 |
16,909 |
24,88,299 |
4,78,636 |
RAJASTHAN |
5,72,546 |
37,022 |
26,04,298 |
8,35,170 |
SIKKIM |
875 |
2 |
61,163 |
23,495 |
TAMIL NADU |
10,32,490 |
76,675 |
16,50,771 |
14,61,841 |
TRIPURA |
5,936 |
317 |
87,378 |
44,219 |
UTTAR PRADESH |
8,87,413 |
70,863 |
40,61,933 |
14,60,443 |
UTTARAKHAND |
40,443 |
4,792 |
12,50,575 |
2,22,836 |
WEST BENGAL |
2,31,190 |
1,35,844 |
23,81,045 |
9,99,585 |
Data Source |
https://data.gov.in/ |
https://data.gov.in/ |
https://censusindia.gov.in/ |
https://data.gov.in/ |
3.
a. Summarized the following data by calculating the mean and standard
deviation.
Note:
You are advisable to use EXCEL. You are supposed to Copy the numbers (final
calculations) from EXCEL and paste them into your word document.
State |
District |
Number
Of Indigenous (Desi) Total Cattle |
Total Buffalo |
UTTARAKHAND |
Uttarkashi |
82991 |
25945 |
UTTARAKHAND |
Chamoli |
132165 |
37922 |
UTTARAKHAND |
Rudraprayag |
71277 |
31115 |
UTTARAKHAND |
Tehri Garhwal |
80833 |
79394 |
UTTARAKHAND |
Dehradun |
87753 |
52185 |
UTTARAKHAND |
Garhwal |
235412 |
30076 |
UTTARAKHAND |
Pithoragarh |
108417 |
37056 |
UTTARAKHAND |
Bageshwar |
70863 |
31432 |
UTTARAKHAND |
Almora |
132038 |
77444 |
UTTARAKHAND |
Champawat |
45506 |
18599 |
UTTARAKHAND |
Nainital |
101009 |
77759 |
UTTARAKHAND |
Udham Singh Nagar |
63311 |
152911 |
UTTARAKHAND |
Hardwar |
63728 |
214480 |
Data
Source: Ministry of agriculture and farmers’ welfare.
3.
b. Write about the general pattern (here, time series component) across the
given years using an appropriate graph.
Note:
You may use EXCEL, Tableau, Power BI Etc. for creating Graph
PLEASE
CHECK THE TABLE BELOW
Year |
Pro duc
tivi ty Gro und nut (Kg ./he ctar e) |
Prod uctiv
ity Rape seed
& Must ard (Kg./ hecta re) |
Year |
Prod uctiv
ity Grou ndnu
t (Kg./ hecta
re) |
Prod uctiv
ity Rape seed
& Must ard (Kg./ hecta re) |
Year |
Prod uctiv
ity Grou ndnu
t (Kg./ hecta
re) |
Prod uctiv
ity Rape seed
& Must ard (Kg./ hecta re) |
Year |
Produ ctivit
y Grou ndnut
(Kg./ hectar e) |
Produ ctivit
y Rapes eed & Musta
rd (Kg./ hectar
e) |
1950-51 |
775 |
368 |
1968-69 |
653 |
469 |
1986-87 |
841 |
700 |
2003-04 |
1357 |
1159 |
1951-52 |
649 |
393 |
1969-70 |
720 |
493 |
1987-88 |
855 |
748 |
2004-05 |
1020 |
1038 |
1952-53 |
611 |
408 |
1970-71 |
834 |
594 |
1988-89 |
1132 |
906 |
2005-06 |
1187 |
1117 |
1953-54 |
811 |
389 |
1971-72 |
823 |
396 |
1989-90 |
930 |
831 |
2006-07 |
866 |
1095 |
1954-55 |
766 |
425 |
1972-73 |
585 |
545 |
1990-91 |
904 |
904 |
2007-08 |
1459 |
1001 |
1955-56 |
752 |
336 |
1973-74 |
845 |
493 |
1991-92 |
818 |
895 |
2008-09 |
1163 |
1143 |
1956-57 |
783 |
411 |
1974-75 |
724 |
612 |
1992-93 |
1049 |
776 |
2009-10 |
991 |
1183 |
1957-58 |
734 |
387 |
1975-76 |
935 |
580 |
1993-94 |
941 |
847 |
2010-11 |
1411 |
1185 |
1958-59 |
828 |
426 |
1976-77 |
747 |
496 |
1994-95 |
1027 |
958 |
2011-12 |
1323 |
1121 |
1959-60 |
708 |
365 |
1977-78 |
866 |
460 |
1995-96 |
1007 |
916 |
2012-13 |
996 |
1262 |
1960-61 |
745 |
467 |
1978-79 |
835 |
525 |
1996-97 |
1138 |
1017 |
2013-14 |
1750 |
1188 |
1961-62 |
725 |
425 |
1979-80 |
805 |
411 |
1997-98 |
1040 |
668 |
2014-15 |
1400 |
1089 |
1962-63 |
695 |
417 |
1980-81 |
736 |
560 |
1998-99 |
1214 |
869 |
2015-16 |
1465 |
1183 |
1963-64 |
769 |
300 |
1981-82 |
972 |
541 |
1999-00 |
766 |
960 |
2016-17 |
1398 |
1304 |
1964-65 |
814 |
507 |
1982-83 |
732 |
577 |
2000-01 |
977 |
935 |
2017-18 |
1893 |
1410 |
1965-66 |
554 |
446 |
1983-84 |
940 |
673 |
2001-02 |
1127 |
1002 |
2018-19 |
1422 |
1511 |
1966-67 |
604 |
408 |
1984-85 |
898 |
771 |
2002-03 |
694 |
854 |
2019-20 |
2063 |
1331 |
1967-68 |
759 |
483 |
1985-86 |
719 |
674 |
|
|
|
2020-21 |
1676 |
1511 |
No comments:
Post a Comment